|
LDAStat |
The program calculates Linear Discriminant Analysis (LDA) parameters using the train data separated onto two classes. The Linear Discriminant Analysis is commonly used techniques for data classification. This method maximizes the ratio of between-class variance to the within-class variance in dataset thereby guaranteeing maximal separability. The approach calculates Linear Discriminant Function (LDF) which coefficients are chosen so that they result in the best separation among the groups for train data set. Variables for the classification should be specified by the user; classes for the data should be specified in the ClassVar variable.
The LDF can be applied in the LDAClass procedure to separate any data into two groups depending on whether the value of LDF is greater or less than 0.
This program use statistical functions from "R" free software environment for statistical computing and graphics (http://www.r-project.org).
This program requires the R-package to be installed on your computer.
Input file should contain table of numerical data: lines for observations (cases) columns should be separated by tabulation or user-defines symbol (; , etc); for example, if comma (,) separator is used, the file format is the same as the CSV (comma separated values) format. No missing data allowed.
Example of output data:
LDA Statistics for class variable ClassVar: NCASES=50; NCLASS0=20; NCLASS1=30 Var Mean0 Mean1 LDF Feat1 9.3970 -10.6047 -5.0675 Feat2 3.2846 -3.1118 -0.6547 Feat3 1.6290 -0.9977 1.0895 Feat4 -2.9638 2.7626 1.1494 Feat5 -10.0696 10.0585 5.8385 B0 * * -3.1990
First line is the header. Second line is the sample description: NCASES - number of cases total; NCLASS0 - number of class 0 cases; NCLASS1 - number of class 1 cases. Next line is output data description: Var - name of variable; Mean0 - mean for class 0; mMean1 - mean for class 1; LDF - coefficient of the linear discriminant function for the variable and b0 coefficient (B0).
Example of input data file format:
ItemName Feat1 Feat2 Feat3 Feat4 Feat5 ClassVar Item1 -11.761101 -5.295846 -2.491684 4.151158 9.777093 1 Item2 -11.425886 -6.753716 0.136692 5.161748 13.618702 1 Item3 -7.069796 0.545457 0.097140 0.678579 10.302988 1 Item4 -13.480880 -3.867702 0.119297 2.333842 10.992096 1 Item5 -9.707938 -2.597949 -2.329997 2.928526 8.441053 1 Item6 -10.013794 -2.165258 -3.169195 2.625904 10.611103 1 Item7 -9.057161 -4.766594 1.691733 1.655782 7.046236 1 Item8 -8.562761 -1.272652 -3.990204 2.286294 12.768212 1 Item9 -12.724631 -4.710623 -2.114719 2.812189 6.434645 1 Item10 -9.593738 -5.478652 -1.799524 4.306497 9.514756 1 Item11 -7.699759 -1.546648 -0.423322 4.889767 9.228675 1 Item12 -13.158116 -2.891354 0.595935 2.264199 12.004761 1 Item13 -10.509598 -3.414075 -1.962310 1.263863 10.199896 1 Item14 -6.547624 -3.594928 -2.117222 5.168950 10.838221 1 Item15 -12.375988 -3.130436 -2.169164 1.537614 11.112888 1 Item16 -12.953032 -2.805048 0.085116 3.303354 7.405194 1 Item17 -11.370708 -2.848384 -0.848201 3.885525 10.569231 1 Item18 -13.117222 -7.025575 1.406507 7.069338 12.230415 1 Item19 -11.573168 0.288003 -2.826167 4.397137 10.851711 1 Item20 -7.993835 -1.204352 -1.924345 0.829829 10.314768 1 Item21 -9.225135 -2.512925 -1.608051 1.420301 9.766411 1 Item22 -8.402783 -0.890500 3.189703 3.754479 7.481063 1 Item23 -9.888180 -3.345775 1.965667 2.906369 11.488815 1 Item24 -11.686270 -5.389477 2.556932 1.661153 9.717826 1 Item25 -12.599567 -0.266091 -3.936308 0.751762 10.405225 1 Item26 -11.365093 -1.919706 -0.458052 1.861843 9.521104 1 Item27 -11.027619 -2.944884 -2.792962 4.144322 7.958556 1 Item28 -11.795160 -6.769646 0.908383 1.005066 11.240333 1 Item29 -13.629933 0.674184 -3.386853 -0.095859 10.490432 1 Item30 -7.823298 -5.452589 -2.336894 1.919889 9.421125 1 Item31 6.360118 6.794549 4.168188 -4.492538 -12.297555 0 Item32 8.774682 0.492721 1.587909 -5.486587 -12.361278 0 Item33 7.768181 3.989776 3.289377 -0.895444 -13.067171 0 Item34 8.581133 2.922361 3.952544 -4.450362 -6.787133 0 Item35 6.176519 4.526292 -2.771599 -3.477187 -7.316202 0 Item36 11.539781 -0.892880 2.868221 -1.456557 -11.008881 0 Item37 11.743034 3.527726 -0.635792 -2.067965 -7.151524 0 Item38 10.527299 1.460768 0.862300 -1.967742 -8.819727 0 Item39 8.148808 5.157964 -0.916135 -1.551958 -9.467513 0 Item40 9.241432 1.483108 -0.981933 1.046571 -8.504166 0 Item41 9.444197 4.963927 1.127201 -0.523484 -9.102817 0 Item42 11.545396 4.604968 4.818171 -5.046815 -13.494675 0 Item43 11.890988 1.220710 -2.069796 -2.942747 -8.996673 0 Item44 11.810480 2.031465 2.987976 -5.699606 -10.026246 0 Item45 10.806543 5.275155 4.969420 -2.792596 -11.345561 0 Item46 10.261177 3.586077 3.340220 -3.339244 -7.795038 0 Item47 8.407544 2.887997 3.104312 -3.734519 -9.758477 0 Item48 7.317484 5.553850 1.618000 -2.525315 -13.613147 0 Item49 10.654500 2.579577 1.922452 -3.765160 -10.414136 0 Item50 6.940641 3.525834 -0.660756 -4.105869 -10.064455 0