|
K-Means |
K-Means (K-means clustering). The data given from input file is clustered by the k-means method, which aims to partition the points into k groups such that the sum of squares from points to the assigned cluster centres is minimized. At the minimum, all cluster centres are at the mean of their Voronoi sets (the set of data points which are nearest to the cluster centre).
This program use statistical functions from "R" free software environment for statistical computing and graphics (http://www.r-project.org).
This program requires the R-package to be installed on your computer.
Input file should contain table of numerical data: lines for observations (cases) columns should be separated by tabulation or user-defines symbol (; , etc); for example, if comma (,) separator is used, the file format is the same as the CSV (comma separated values) format. No missing data allowed.
Example of input data file format:
ItemName Feat1 Feat2 Feat3 Feat4 Feat5 ClassVar Item1 -11.761101 -5.295846 -2.491684 4.151158 9.777093 1 Item2 -11.425886 -6.753716 0.136692 5.161748 13.618702 1 Item3 -7.069796 0.545457 0.097140 0.678579 10.302988 1 Item4 -13.480880 -3.867702 0.119297 2.333842 10.992096 1 Item5 -9.707938 -2.597949 -2.329997 2.928526 8.441053 1 Item6 -10.013794 -2.165258 -3.169195 2.625904 10.611103 1 Item7 -9.057161 -4.766594 1.691733 1.655782 7.046236 1 Item8 -8.562761 -1.272652 -3.990204 2.286294 12.768212 1 Item9 -12.724631 -4.710623 -2.114719 2.812189 6.434645 1 Item10 -9.593738 -5.478652 -1.799524 4.306497 9.514756 1 Item11 -7.699759 -1.546648 -0.423322 4.889767 9.228675 1 Item12 -13.158116 -2.891354 0.595935 2.264199 12.004761 1 Item13 -10.509598 -3.414075 -1.962310 1.263863 10.199896 1 Item14 -6.547624 -3.594928 -2.117222 5.168950 10.838221 1 Item15 -12.375988 -3.130436 -2.169164 1.537614 11.112888 1 Item16 -12.953032 -2.805048 0.085116 3.303354 7.405194 1 Item17 -11.370708 -2.848384 -0.848201 3.885525 10.569231 1 Item18 -13.117222 -7.025575 1.406507 7.069338 12.230415 1 Item19 -11.573168 0.288003 -2.826167 4.397137 10.851711 1 Item20 -7.993835 -1.204352 -1.924345 0.829829 10.314768 1 Item21 -9.225135 -2.512925 -1.608051 1.420301 9.766411 1 Item22 -8.402783 -0.890500 3.189703 3.754479 7.481063 1 Item23 -9.888180 -3.345775 1.965667 2.906369 11.488815 1 Item24 -11.686270 -5.389477 2.556932 1.661153 9.717826 1 Item25 -12.599567 -0.266091 -3.936308 0.751762 10.405225 1 Item26 -11.365093 -1.919706 -0.458052 1.861843 9.521104 1 Item27 -11.027619 -2.944884 -2.792962 4.144322 7.958556 1 Item28 -11.795160 -6.769646 0.908383 1.005066 11.240333 1 Item29 -13.629933 0.674184 -3.386853 -0.095859 10.490432 1 Item30 -7.823298 -5.452589 -2.336894 1.919889 9.421125 1 Item31 6.360118 6.794549 4.168188 -4.492538 -12.297555 0 Item32 8.774682 0.492721 1.587909 -5.486587 -12.361278 0 Item33 7.768181 3.989776 3.289377 -0.895444 -13.067171 0 Item34 8.581133 2.922361 3.952544 -4.450362 -6.787133 0 Item35 6.176519 4.526292 -2.771599 -3.477187 -7.316202 0 Item36 11.539781 -0.892880 2.868221 -1.456557 -11.008881 0 Item37 11.743034 3.527726 -0.635792 -2.067965 -7.151524 0 Item38 10.527299 1.460768 0.862300 -1.967742 -8.819727 0 Item39 8.148808 5.157964 -0.916135 -1.551958 -9.467513 0 Item40 9.241432 1.483108 -0.981933 1.046571 -8.504166 0 Item41 9.444197 4.963927 1.127201 -0.523484 -9.102817 0 Item42 11.545396 4.604968 4.818171 -5.046815 -13.494675 0 Item43 11.890988 1.220710 -2.069796 -2.942747 -8.996673 0 Item44 11.810480 2.031465 2.987976 -5.699606 -10.026246 0 Item45 10.806543 5.275155 4.969420 -2.792596 -11.345561 0 Item46 10.261177 3.586077 3.340220 -3.339244 -7.795038 0 Item47 8.407544 2.887997 3.104312 -3.734519 -9.758477 0 Item48 7.317484 5.553850 1.618000 -2.525315 -13.613147 0 Item49 10.654500 2.579577 1.922452 -3.765160 -10.414136 0 Item50 6.940641 3.525834 -0.660756 -4.105869 -10.064455 0